|
|
|
|
Full Scoreboard »» |
|
|
|
|
Full Scoreboard »» |
Dallas Stars 0-0-0, 0pts · 13th in Conference Ouest |
Player | # | POS | CON | CK | FG | DI | SK | ST | EN | DU | PH | FO | PA | SC | DF | PS | EX | LD | PO | MO | OV | AGE | CONTRACT | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
![]() | 0 | C/LW/RW | 100.00 | 92 | 60 | 79 | 86 | 79 | 81 | 98 | 95 | 97 | 92 | 91 | 74 | 71 | 79 | 83 | 88 | 50 | 0 | 30 | 8,000,000$/7yrs | |||
![]() | 0 | C | 100.00 | 80 | 58 | 82 | 84 | 72 | 73 | 93 | 70 | 82 | 70 | 70 | 79 | 25 | 63 | 63 | 74 | 50 | 0 | 20 | 925,000$/1yrs | |||
![]() | 0 | LW | 100.00 | 99 | 94 | 56 | 82 | 82 | 80 | 99 | 95 | 70 | 81 | 91 | 66 | 41 | 70 | 70 | 84 | 50 | 0 | 24 | 8,330,674$/5yrs | |||
![]() | 0 | LW | 100.00 | 71 | 42 | 86 | 81 | 66 | 77 | 96 | 89 | 42 | 83 | 90 | 62 | 25 | 69 | 72 | 83 | 50 | 0 | 28 | 4,166,667$/2yrs | |||
![]() | 0 | LW | 100.00 | 87 | 79 | 76 | 83 | 86 | 70 | 99 | 76 | 39 | 66 | 76 | 61 | 25 | 79 | 80 | 74 | 50 | 0 | 33 | 7,000,000$/3yrs | |||
![]() | 0 | C | 100.00 | 87 | 45 | 92 | 89 | 70 | 69 | 80 | 66 | 99 | 65 | 73 | 77 | 25 | 65 | 66 | 75 | 50 | 0 | 25 | 1,400,000$/1yrs | |||
![]() | 0 | C/LW | 100.00 | 86 | 75 | 80 | 70 | 71 | 59 | 84 | 64 | 64 | 59 | 58 | 74 | 25 | 62 | 62 | 65 | 50 | 0 | 24 | 800,000$/1yrs | |||
![]() | 0 | RW | 100.00 | 76 | 54 | 83 | 77 | 74 | 66 | 92 | 69 | 38 | 71 | 75 | 73 | 25 | 69 | 72 | 75 | 50 | 0 | 27 | 2,750,000$/1yrs | |||
![]() | 0 | C/RW | 100.00 | 91 | 99 | 74 | 65 | 73 | 57 | 67 | 66 | 56 | 57 | 57 | 76 | 25 | 59 | 59 | 64 | 50 | 0 | 25 | 800,000$/1yrs | |||
![]() | 0 | C/RW | 100.00 | 69 | 43 | 82 | 83 | 81 | 90 | 98 | 99 | 79 | 91 | 95 | 62 | 66 | 71 | 75 | 87 | 50 | 0 | 26 | 9,250,000$/2yrs | |||
![]() | 0 | C/RW | 100.00 | 77 | 44 | 86 | 81 | 77 | 64 | 86 | 71 | 72 | 66 | 58 | 80 | 25 | 68 | 69 | 68 | 50 | 0 | 29 | 775,000$/1yrs | |||
![]() | 0 | C | 100.00 | 90 | 66 | 61 | 85 | 72 | 74 | 83 | 77 | 80 | 75 | 80 | 67 | 25 | 72 | 76 | 77 | 50 | 0 | 27 | 4,425,000$/2yrs | |||
![]() | 0 | D | 100.00 | 96 | 47 | 93 | 66 | 71 | 76 | 66 | 64 | 25 | 64 | 48 | 82 | 25 | 46 | 46 | 66 | 50 | 0 | 23 | 775,000$/1yrs | |||
![]() | 0 | D | 100.00 | 78 | 44 | 84 | 83 | 74 | 95 | 99 | 87 | 25 | 69 | 60 | 85 | 47 | 90 | 91 | 75 | 50 | 0 | 33 | 11,000,000$/4yrs | |||
![]() | 0 | D | 100.00 | 80 | 45 | 89 | 78 | 77 | 78 | 86 | 62 | 25 | 51 | 47 | 84 | 25 | 67 | 68 | 64 | 50 | 0 | 26 | 3,400,000$/5yrs | |||
![]() | 0 | D | 100.00 | 85 | 56 | 80 | 79 | 78 | 86 | 99 | 61 | 25 | 52 | 48 | 87 | 25 | 80 | 82 | 66 | 50 | 0 | 30 | 4,000,000$/2yrs | |||
![]() | 0 | D | 100.00 | 77 | 79 | 71 | 78 | 79 | 74 | 80 | 53 | 25 | 46 | 41 | 67 | 39 | 60 | 60 | 56 | 50 | 0 | 26 | 1,400,000$/1yrs | |||
![]() | 0 | D | 100.00 | 78 | 56 | 86 | 77 | 94 | 78 | 96 | 65 | 25 | 52 | 47 | 95 | 25 | 74 | 75 | 65 | 50 | 0 | 30 | 4,600,000$/3yrs | |||
Scratches | ||||||||||||||||||||||||||
![]() | 0 | D | 100.00 | 75 | 72 | 82 | 67 | 72 | 58 | 60 | 52 | 25 | 45 | 41 | 64 | 39 | 55 | 55 | 54 | 50 | 0 | 25 | 1,250,000$/2yrs | |||
TEAM AVERAGE | 100.00 | 83 | 61 | 80 | 79 | 76 | 74 | 87 | 73 | 52 | 66 | 66 | 74 | 33 | 68 | 70 | 72 | 50 | 0 |
Priority | Type | Description |
---|---|---|
1 | | or OR | Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar |
2 | && or AND | Logical "and". Filter the column for content that matches text from either side of the operator. |
3 | /\d/ | Add any regex to the query to use in the query ("mig" flags can be included /\w/mig ) |
4 | < <= >= > | Find alphabetical or numerical values less than or greater than or equal to the filtered query |
5 | ! or != | Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (= ), single (' ) or double quote (" ) to exactly not match a filter. |
6 | " or = | To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query |
7 | - or to | Find a range of values. Make sure there is a space before and after the dash (or the word "to") |
8 | ? | Wildcard for a single, non-space character. |
8 | * | Wildcard for zero or more non-space characters. |
9 | ~ | Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query |
10 | text | Any text entered in the filter will match text found within the column |
Goalie | # | CON | SK | DU | EN | SZ | AG | RB | SC | HS | RT | PH | PS | EX | LD | PO | MO | OV | AGE | CONTRACT |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
![]() | 0 | 100.00 | 79 | 86 | 83 | 75 | 79 | 80 | 74 | 80 | 82 | 79 | 87 | 63 | 65 | 79 | 50 | 0 | 27 | 5,666,666$/2yrs |
![]() | 0 | 100.00 | 65 | 67 | 66 | 82 | 69 | 60 | 69 | 64 | 65 | 64 | 59 | 59 | 59 | 65 | 50 | 0 | 27 | 2,750,000$/1yrs |
Scratches | ||||||||||||||||||||
TEAM AVERAGE | 100.00 | 72 | 77 | 75 | 79 | 74 | 70 | 72 | 72 | 74 | 72 | 73 | 61 | 62 | 72 | 50 | 0 |
Player | # | POS | CON | CK | FG | DI | SK | ST | EN | DU | PH | FO | PA | SC | DF | PS | EX | LD | PO | MO | OV | AGE | CONTRACT | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
![]() | 0 | C | 100.00 | 87 | 69 | 86 | 65 | 78 | 57 | 81 | 65 | 90 | 56 | 64 | 81 | 25 | 49 | 49 | 68 | 70 | 0 | 22 | 925,000$/2yrs | |||
![]() | 0 | C/RW | 100.00 | 94 | 99 | 25 | 72 | 86 | 43 | 67 | 62 | 46 | 56 | 57 | 57 | 25 | 45 | 45 | 60 | 70 | 0 | 21 | 820,000$/2yrs | |||
![]() | 0 | C/LW | 100.00 | 71 | 43 | 99 | 68 | 73 | 54 | 63 | 65 | 74 | 60 | 58 | 75 | 25 | 57 | 58 | 64 | 70 | 0 | 23 | 775,000$/1yrs | |||
![]() | 0 | LW | 100.00 | 71 | 59 | 99 | 67 | 59 | 32 | 30 | 44 | 50 | 38 | 44 | 58 | 42 | 44 | 44 | 50 | 70 | 0 | 18 | 950,000$/3yrs | |||
![]() | 0 | C | 100.00 | 64 | 61 | 72 | 71 | 61 | 52 | 49 | 64 | 80 | 62 | 63 | 59 | 60 | 44 | 44 | 62 | 70 | 0 | 19 | 918,333$/3yrs | |||
![]() | 0 | LW/RW | 100.00 | 67 | 62 | 78 | 61 | 62 | 70 | 72 | 62 | 50 | 60 | 61 | 60 | 58 | 44 | 44 | 62 | 70 | 0 | 20 | 545,000$/1yrs | |||
![]() | 0 | D | 100.00 | 74 | 69 | 87 | 77 | 69 | 68 | 73 | 52 | 25 | 34 | 54 | 62 | 51 | 47 | 47 | 59 | 70 | 0 | 22 | 789,167$/1yrs | |||
![]() | 0 | D | 100.00 | 76 | 77 | 75 | 68 | 77 | 63 | 67 | 51 | 25 | 46 | 42 | 62 | 40 | 44 | 44 | 55 | 70 | 0 | 21 | 916,667$/2yrs | |||
![]() | 0 | D | 100.00 | 79 | 74 | 90 | 66 | 74 | 79 | 85 | 56 | 25 | 52 | 45 | 65 | 43 | 44 | 44 | 59 | 70 | 0 | 22 | 813,333$/1yrs | |||
![]() | 0 | D | 100.00 | 73 | 78 | 61 | 64 | 78 | 75 | 83 | 47 | 25 | 39 | 40 | 59 | 38 | 44 | 44 | 52 | 70 | 0 | 23 | 925,000$/1yrs | |||
![]() | 0 | D | 100.00 | 72 | 67 | 83 | 78 | 67 | 80 | 86 | 56 | 25 | 48 | 49 | 62 | 47 | 49 | 49 | 60 | 70 | 0 | 22 | 863,333$/1yrs | |||
Scratches | ||||||||||||||||||||||||||
![]() | 0 | RW | 100.00 | 94 | 47 | 95 | 69 | 74 | 59 | 58 | 63 | 26 | 60 | 64 | 65 | 25 | 46 | 46 | 66 | 24 | 0 | 25 | 775,000$/1yrs | |||
![]() | 0 | C | 100.00 | 66 | 61 | 79 | 71 | 61 | 74 | 76 | 65 | 80 | 65 | 62 | 60 | 59 | 44 | 44 | 65 | 24 | 0 | 25 | 775,000$/2yrs | |||
![]() | 0 | D | 100.00 | 72 | 65 | 88 | 78 | 65 | 55 | 58 | 50 | 25 | 41 | 39 | 65 | 37 | 64 | 64 | 53 | 24 | 0 | 25 | 775,000$/1yrs |
Goalie | # | CON | SK | DU | EN | SZ | AG | RB | SC | HS | RT | PH | PS | EX | LD | PO | MO | OV | AGE | CONTRACT | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
![]() | 0 | 100.00 | 60 | 54 | 68 | 86 | 63 | 63 | 59 | 66 | 63 | 62 | 30 | 46 | 46 | 61 | 70 | 0 | 22 | 925,000$/1yrs | ||||||
Scratches |
Coaches Name | PH | DF | OF | PD | EX | LD | PO | CNT | Age | Contract | Salary |
---|
General Manager | Roger Haché |
---|
Priority | Type | Description |
---|---|---|
1 | | or OR | Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar |
2 | && or AND | Logical "and". Filter the column for content that matches text from either side of the operator. |
3 | /\d/ | Add any regex to the query to use in the query ("mig" flags can be included /\w/mig ) |
4 | < <= >= > | Find alphabetical or numerical values less than or greater than or equal to the filtered query |
5 | ! or != | Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (= ), single (' ) or double quote (" ) to exactly not match a filter. |
6 | " or = | To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query |
7 | - or to | Find a range of values. Make sure there is a space before and after the dash (or the word "to") |
8 | ? | Wildcard for a single, non-space character. |
8 | * | Wildcard for zero or more non-space characters. |
9 | ~ | Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query |
10 | text | Any text entered in the filter will match text found within the column |
# | Player Name | Team Name | # | POS | GP | G | A | P | +/- | PIM | PIM5 | HIT | SHT | OSB | OSM | SHT% | SB | MP | AMG | PPG | PPA | PPP | PPM | PKG | PKA | PKP | PKM | GW | GT | FO% | FOT | GA | TA | EG | HT | P/20 | PSG | PSS |
---|
Priority | Type | Description |
---|---|---|
1 | | or OR | Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar |
2 | && or AND | Logical "and". Filter the column for content that matches text from either side of the operator. |
3 | /\d/ | Add any regex to the query to use in the query ("mig" flags can be included /\w/mig ) |
4 | < <= >= > | Find alphabetical or numerical values less than or greater than or equal to the filtered query |
5 | ! or != | Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (= ), single (' ) or double quote (" ) to exactly not match a filter. |
6 | " or = | To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query |
7 | - or to | Find a range of values. Make sure there is a space before and after the dash (or the word "to") |
8 | ? | Wildcard for a single, non-space character. |
8 | * | Wildcard for zero or more non-space characters. |
9 | ~ | Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query |
10 | text | Any text entered in the filter will match text found within the column |
# | Goalie Name | Team Name | GP | W | L | OTL | PCT | GAA | MP | PIM | SO | GA | SA | SAR | A | EG | PS % | PSA | ST | BG | S1 | S2 | S3 |
---|
Priority | Type | Description |
---|---|---|
1 | | or OR | Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar |
2 | && or AND | Logical "and". Filter the column for content that matches text from either side of the operator. |
3 | /\d/ | Add any regex to the query to use in the query ("mig" flags can be included /\w/mig ) |
4 | < <= >= > | Find alphabetical or numerical values less than or greater than or equal to the filtered query |
5 | ! or != | Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (= ), single (' ) or double quote (" ) to exactly not match a filter. |
6 | " or = | To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query |
7 | - or to | Find a range of values. Make sure there is a space before and after the dash (or the word "to") |
8 | ? | Wildcard for a single, non-space character. |
8 | * | Wildcard for zero or more non-space characters. |
9 | ~ | Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query |
10 | text | Any text entered in the filter will match text found within the column |
# | VS Team | GP | W | L | T | OTW | OTL | SOW | SOL | GF | GA | Diff | P | PCT | G | A | TP | SO | EG | GP1 | GP2 | GP3 | GP4 | SHF | SH1 | SP2 | SP3 | SP4 | SHA | SHB | Pim | Hit | PPA | PPG | PP% | PKA | PK GA | PK% | PK GF | W OF FO | T OF FO | OF FO% | W DF FO | T DF FO | DF FO% | W NT FO | T NT FO | NT FO% | PZ DF | PZ OF | PZ NT | PC DF | PC OF | PC NT | GF% | SH% | SV% | PDO | PDOBRK |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.00% | 0 | 0 | 0.00% | 0 | 0 | 0 | 0.00% | 0 | 0 | 0.00% | 0 | 0 | 0.00% | 0 | 0 | 0 | 0 | 0 | 0 | nan% | nan% | nan% | nan | Unlucky |
Puck Time | |
---|---|
Offensive Zone | NAN |
Neutral Zone | NAN |
Defensive Zone | NAN |
Puck Time | |
---|---|
Offensive Zone Start | 0 |
Neutral Zone Start | 0 |
Defensive Zone Start | 0 |
Puck Time | |
---|---|
With Puck | NAN |
Without Puck | NAN |
Faceoffs | |
---|---|
Faceoffs Won | 0 |
Faceoffs Lost | 0 |
Team Average Shots after | League Average Shots after | |
---|---|---|
1st Period | nan | 9.57 |
2nd Period | nan | 20.31 |
3rd Period | nan | 30.68 |
Overtime | nan | 31.4 |
Goals in | Team Average Goals after | League Average Goals after |
---|---|---|
1st Period | nan | 0.64 |
2nd Period | nan | 1.65 |
3rd Period | nan | 2.67 |
Overtime | nan | 2.83 |
Even Strenght Goal | 0 |
---|---|
PP Goal | 0 |
PK Goal | 0 |
Empty Net Goal | 0 |
Home | Away | |
---|---|---|
Win | 0 | 0 |
Lost | 0 | 0 |
Overtime Lost | 0 | 0 |
PP Attempt | 0 |
---|---|
PP Goal | 0 |
PK Attempt | 0 |
PK Goal Against | 0 |
Home | |
---|---|
Shots For | nan |
Shots Against | nan |
Goals For | nan |
Goals Against | nan |
Hits | nan |
Shots Blocked | nan |
Pim | nan |
Projected Total Cap Hit | 0$ |
Projected Cap Space | 83,500,000$ |
Retains And Buyout Cap Hit | 0$ |
Salary Cap To Date | 0$ |
Players In Salary Cap | 21 |
LTIR Players | 0 |
Stars Roster | Pos | Age | Cap Hit | 2024-25 | 2025-26 | 2026-27 | 2027-28 | 2028-29 | 2029-30 | 2030-31 | 2031-32 |
---|---|---|---|---|---|---|---|---|---|---|---|
Adam Larsson ![]() | D | 30 | 4,000,000$ | 4,000,000$ | 4,000,000$ | ||||||
Anders Lee ![]() | LW | 33 | 7,000,000$ | 7,000,000$ | 7,000,000$ | 7,000,000$ | |||||
Brady Tkachuk ![]() | LW | 24 | 8,330,674$ | 8,330,674$ | 8,330,674$ | 8,330,674$ | 8,330,674$ | 8,330,674$ | |||
Carter Verhaeghe ![]() | LW | 28 | 4,166,667$ | 4,166,667$ | 4,166,667$ | ||||||
Cole Sillinger ![]() | C | 20 | 925,000$ | 925,000$ | |||||||
Drew Doughty ![]() | D | 33 | 11,000,000$ | 11,000,000$ | 11,000,000$ | 11,000,000$ | 11,000,000$ | ||||
Igor Shesterkin ![]() | G | 27 | 5,666,666$ | 5,666,667$ | 5,666,667$ | ||||||
J.T Miller ![]() | C/LW/RW | 30 | 8,000,000$ | 8,000,000$ | 8,000,000$ | 8,000,000$ | 8,000,000$ | 8,000,000$ | 8,000,000$ | 8,000,000$ | |
Jamie Oleksiak ![]() | D | 30 | 4,600,000$ | 4,600,000$ | 4,600,000$ | 4,600,000$ | |||||
Jonas Siegenthaler ![]() | D | 26 | 3,400,000$ | 3,400,000$ | 3,400,000$ | 3,400,000$ | 3,400,000$ | 3,400,000$ | |||
Kaapo Kahkonen ![]() | G | 27 | 2,750,000$ | 2,750,000$ | |||||||
Mackenzie Entwistle ![]() | C/LW | 24 | 800,000$ | 800,000$ | |||||||
Michael McLeod ![]() | C | 25 | 1,400,000$ | 1,400,000$ | |||||||
Mikko Rantanen ![]() | C/RW | 26 | 9,250,000$ | 9,250,000$ | 9,250,000$ | ||||||
Nikolai Knyzhov ![]() | D | 25 | 1,250,000$ | 1,250,000$ | 1,250,000$ | ||||||
Oskar Sundqvist ![]() | C/RW | 29 | 775,000$ | 775,000$ | |||||||
Philippe Myers ![]() | D | 26 | 1,400,000$ | 1,400,000$ | |||||||
Reese Johnson ![]() | C/RW | 25 | 800,000$ | 800,000$ | |||||||
Sam Bennett ![]() | C | 27 | 4,425,000$ | 4,425,000$ | 4,425,000$ | ||||||
Ty Emberson ![]() | D | 23 | 775,000$ | 775,000$ | |||||||
Warren Foegele ![]() | RW | 27 | 2,750,000$ | 2,750,000$ |
Forward Lines | |||||||
---|---|---|---|---|---|---|---|
|
|
| |||||
|
|
| |||||
|
|
| |||||
|
|
|
Defensive Pairings | |||||||
---|---|---|---|---|---|---|---|
|
| ||||||
|
| ||||||
|
|
1st Power Play Unit | |||||||
---|---|---|---|---|---|---|---|
|
|
| |||||
|
|
2nd Power Play Unit | |||||||
---|---|---|---|---|---|---|---|
|
|
| |||||
|
|
Goalies | |||||||
---|---|---|---|---|---|---|---|
Priority | Type | Description |
---|---|---|
1 | | or OR | Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar |
2 | && or AND | Logical "and". Filter the column for content that matches text from either side of the operator. |
3 | /\d/ | Add any regex to the query to use in the query ("mig" flags can be included /\w/mig ) |
4 | < <= >= > | Find alphabetical or numerical values less than or greater than or equal to the filtered query |
5 | ! or != | Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (= ), single (' ) or double quote (" ) to exactly not match a filter. |
6 | " or = | To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query |
7 | - or to | Find a range of values. Make sure there is a space before and after the dash (or the word "to") |
8 | ? | Wildcard for a single, non-space character. |
8 | * | Wildcard for zero or more non-space characters. |
9 | ~ | Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query |
10 | text | Any text entered in the filter will match text found within the column |
# | VS Team | GP | W | L | T | OTW | OTL | SOW | SOL | GF | GA | Diff | P | PCT | G | A | TP | SO | EG | GP1 | GP2 | GP3 | GP4 | SHF | SH1 | SP2 | SP3 | SP4 | SHA | SHB | Pim | Hit | PPA | PPG | PP% | PKA | PK GA | PK% | PK GF | W OF FO | T OF FO | OF FO% | W DF FO | T DF FO | DF FO% | W NT FO | T NT FO | NT FO% | PZ DF | PZ OF | PZ NT | PC DF | PC OF | PC NT | GF% | SH% | SV% | PDO | PDOBRK |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.00% | 0 | 0 | 0.00% | 0 | 0 | 0 | 0.00% | 0 | 0 | 0.00% | 0 | 0 | 0.00% | 0 | 0 | 0 | 0 | 0 | 0 | nan% | nan% | nan% | nan | Unlucky |
Puck Time | |
---|---|
Offensive Zone | NAN |
Neutral Zone | NAN |
Defensive Zone | NAN |
Puck Time | |
---|---|
Offensive Zone Start | 0 |
Neutral Zone Start | 0 |
Defensive Zone Start | 0 |
Puck Time | |
---|---|
With Puck | NAN |
Without Puck | NAN |
Faceoffs | |
---|---|
Faceoffs Won | 0 |
Faceoffs Lost | 0 |
Team Average Shots after | League Average Shots after | |
---|---|---|
1st Period | nan | 9.57 |
2nd Period | nan | 20.31 |
3rd Period | nan | 30.68 |
Overtime | nan | 31.4 |
Goals in | Team Average Goals after | League Average Goals after |
---|---|---|
1st Period | nan | 0.64 |
2nd Period | nan | 1.65 |
3rd Period | nan | 2.67 |
Overtime | nan | 2.83 |
Even Strenght Goal | 0 |
---|---|
PP Goal | 0 |
PK Goal | 0 |
Empty Net Goal | 0 |
Home | Away | |
---|---|---|
Win | 0 | 0 |
Lost | 0 | 0 |
Overtime Lost | 0 | 0 |
PP Attempt | 0 |
---|---|
PP Goal | 0 |
PK Attempt | 0 |
PK Goal Against | 0 |
Home | |
---|---|
Shots For | nan |
Shots Against | nan |
Goals For | nan |
Goals Against | nan |
Hits | nan |
Shots Blocked | nan |
Pim | nan |
Date | Matchup | Result | Detail |
---|
Salary Cap | |||
---|---|---|---|
Players Total Salaries | Retained Salary | Total Cap Hit | Estimated Cap Space |
83,464,008$ | 0$ | 0$ | 83,500,000$ |
Arena | Goal Horn | About us | |
---|---|---|---|
![]() | Name | Americain Airlines Center | |
City | Dallas | ||
Capacity | 18000 | ||
Season Ticket Holders | 40% |
Arena Capacity - Ticket Price Attendance - % | |||||
---|---|---|---|---|---|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Arena Capacity | 6000 | 5000 | 2000 | 4000 | 1000 |
Ticket Price | 100$ | 60$ | 35$ | 25$ | 200$ |
Attendance | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% |
Attendance PCT | 0.00% | 0.00% | 0.00% | 0.00% | 0.00% |
Income | |||||
---|---|---|---|---|---|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Home Games Left | Average Attendance - % | Average Income per Game | Year to Date Revenue | Arena Capacity | Team Popularity |
41 | 0 - 0.00% | 0$ | 0$ | 18000 | 100 |
Expenses | |||
---|---|---|---|
Players Total Salaries | Players Total Average Salaries | Coaches Salaries | Special Salary Cap Value |
83,464,008$ | 83,464,007$ | 0$ | 0$ |
Year To Date Expenses | Salary Cap Per Days | Salary Cap To Date | Luxury Taxe Total |
---|---|---|---|
0$ | 0$ | 0$ | 0$ |
Estimate | |||
---|---|---|---|
Estimated Season Revenue | Remaining Season Days | Expenses Per Days | Estimated Season Expenses |
0$ | 11 | 0$ | 0$ |
Team Total Estimate | |||
---|---|---|---|
Estimated Season Expenses | Estimated Season Salary Cap | Current Bank Account | Projected Bank Account |
0$ | 0$ | -639,851,858$ | -639,851,858$ |
Left Wing | Center | Right Wing | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
|
|
Defense #1 | Defense #2 | Goalie | ||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
|
|
Year | Ronde 1 | Ronde 2 | Ronde 3 | Ronde 4 | Ronde 5 | Ronde 6 | Ronde 7 |
---|---|---|---|---|---|---|---|
2025 | |||||||
2026 | |||||||
2027 | |||||||
2028 | |||||||
2029 |
Priority | Type | Description |
---|---|---|
1 | | or OR | Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar |
2 | && or AND | Logical "and". Filter the column for content that matches text from either side of the operator. |
3 | /\d/ | Add any regex to the query to use in the query ("mig" flags can be included /\w/mig ) |
4 | < <= >= > | Find alphabetical or numerical values less than or greater than or equal to the filtered query |
5 | ! or != | Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (= ), single (' ) or double quote (" ) to exactly not match a filter. |
6 | " or = | To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query |
7 | - or to | Find a range of values. Make sure there is a space before and after the dash (or the word "to") |
8 | ? | Wildcard for a single, non-space character. |
8 | * | Wildcard for zero or more non-space characters. |
9 | ~ | Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query |
10 | text | Any text entered in the filter will match text found within the column |
Prospect | Team Name | Draft Year | Overall Pick | Information | Lien |
---|---|---|---|---|---|
1 ballo dal 2024 | |||||
Adam Gajan | 2023 | 27 | |||
Alban Eriksson | 2018 | 48 | |||
Alex Galchenyuk | Link | ||||
Anthony Romani | 2024 | 111 | |||
Beckett Hendrickson | 2023 | 123 | |||
Braden Hache | 2021 | 204 | |||
Buddy Robinson | Link | ||||
Carl Lindbom | 2021 | 214 | |||
Casper Nassen | 2023 | 219 | |||
Charlie Elick | 2024 | 47 | |||
Chase Mclane | 2020 | 209 | |||
Chase Wutzke | 2024 | 143 | |||
Corson Ceulemans | 2021 | 26 | |||
Cédric Paré | |||||
Danila Yurov | 2022 | 27 | |||
David Spacek | 2022 | 135 | |||
Emil Jarventie | 2023 | 187 | |||
Emmett Croteau | 2022 | 167 | |||
Frederic Brunet | 2022 | 103 | |||
Fyodor Avramov | 2024 | 175 | |||
German Rubtsov | |||||
Herman Traff | 2024 | 79 | |||
Hugo Alnefelt | 2019 | 83 | Link | ||
Ilya Safonov | 2021 | 140 | |||
Jan Bednar | 2020 | 84 | |||
Josh Jacobs | |||||
Judd Caulfield | 2019 | 107 | |||
Justin Ertel | 2021 | 88 | |||
Kevin Gravel | Link | ||||
Kevin Mandolese | Link | ||||
Kirill Slepets | 2019 | 138 | |||
Linus Soderstrom | |||||
Michael Brandsegg-Nygård | 2024 | 15 | |||
Michael Del Zotto | Link | ||||
Mikhail Gulyayev | 2023 | 36 | |||
Patrik Hamrla | 2021 | 76 | |||
Riku Tohila | 2022 | 199 | |||
Rory Kerins | 2020 | 178 | |||
Ryan Chesley | 2022 | 39 | |||
Ryan Francis | 2020 | 147 | |||
Ryan Ufko | 2021 | 108 | |||
Sawyer Mynio | 2023 | 91 | |||
Shane Lachance | 2021 | 172 | |||
Tory Pitner | 2024 | 207 | |||
Trent Miner | 2019 | 200 | |||
Ty Smilanic | 2020 | 70 | |||
Tyler Boucher | 2021 | 18 | |||
Victor Brattstrom | 2018 | 128 | |||
Visa Vedenpaa | 2023 | 155 | |||
Zach Uens | 2020 | 116 | |||
Zion Nybeck | 2020 | 85 |